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Abstract. Schizophrenia (SCZ) is a severe mental disorder with a large genetic
component. While recent large-scale microarray- and sequencing-based genome
wide association studies have made significant progress toward finding SCZ risk
variants and genes of subtle effect, the interactions among them were not con-
sidered in those studies. Using a protein-protein interaction network both in our
regression model and to generate a SCZ gene subnetwork, we developed an
analytical framework with Logit-Lapnet, the graphical Laplacian-regularized
logistic regression, for whole exome sequencing (WES) data analysis to detect
SCZ gene subnetworks. Using simulated data from sequencing-based associa-
tion study, we compared the performances of Logit-Lapnet with other logistic
regression (LR)-based models. We use Logit-Lapnet to prioritize genes
according to their coefficients and select top-ranked genes as seeds to generate
the gene sub-network that is associated to SCZ. The comparison demonstrated
not only the applicability but also better performance of Logit-Lapnet to score
disease risk genes using sequencing-based association data. We applied our
method to SCZ whole exome sequencing data and selected top-ranked risk
genes, the majority of which are either known SCZ genes or genes potentially
associated with SCZ. We then used the seed genes to construct SCZ gene
subnetworks. This result demonstrates that by ranking gene according to their
disease contributions our method scores and thus prioritizes disease risk genes
for further investigation. An implementation of our approach in MATLAB is
freely available for download at: http://zdzlab.einstein.yu.edu/1/publications/
LapNet-MATLAB.zip.

1 Introduction

SCZ is a common and severe lifelong brain disorder. It is a major cause of disability and
reduces life expectancy by *25 years on average. With its substantial mortality and
morbidity, SCZ causes enormous personal and community burdens (Darves-Bornoz
et al. 1995). In the United States, about 1 % of the general population, or 3 million
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Americans, suffer from this lifelong disabling illness (Regier et al. 1993). Thus, eluci-
dating the etiology of the disease and developing effective treatment are of great medical
urgency. The heritability of SCZ is well established. Recent studies have revealed a
complex genetic architecture of the disease, involving multiple and heterogeneous
genetic factors. Risk variants range in frequency from common to extremely rare and
size from single nucleotide variants (SNVs) to large copy number variants (CNVs).
Since 2009, GWASs have identified around 50 SCZ-associated loci with genome-wide
statistical significance (P < 5 × 10−8) (Regier et al. 1993). Recently, a meta-analysis of
SCZ discovered 108 risk loci, providing a significant source for identifying causal
variants and causal genes of SCZ (Schizophrenia Working Group of the Psychiatric
Genomics 2014). Rare congenital disorders associated with structural variants at
22q11.2, 15q13.3, 1q21.1, and several other genomic locations count for relatively
small proportion of cases with SCZ (Bergen et al. 2012; Betcheva et al. 2013; Huang
et al. 2010; Irish Schizophrenia Genomics and the Wellcome Trust Case Control 2012;
Jeffrey A. Lieberman 2006; Shi et al. 2009; Shi et al. 2011; Wong et al. 2014).
Increasing number of structural variation burden has been also observed in SCZ cases
(Walsh et al. 2008).

Next-generation sequencing (NGS) has made it possible to evaluate the role of de
novo or rare SNVs, both previously essentially inaccessible, in SCZ with DNA samples
from parent-child trios or case-control cohorts. Using WES, instead of SNP microarray,
as the genotyping tool to obtain a complete picture of genetic variants in coding
sequences, a recent study assayed rare coding SNVs and small insertions and deletions
(indels) in 2,536 SCZ cases and 2,543 normal controls and demonstrated a polygenic
burden primarily arising from rare disruptive mutations distributed across many genes
(Purcell et al. 2014). Recently, a number of statistical tests have been designed for
WES-based variant analysis (Asimit and Zeggini 2010; Bansal et al. 2010; Basu and
Pan 2011; Stitziel et al. 2011). Most of these methods first aggregate variants in each
gene and then consider the association of each gene with the disease/phenotype sep-
arately. Hoffman et al. have developed a framework for applying a family of penalized
regression methods that simultaneously consider multiple susceptibility loci in the same
statistical model (Hoffman et al. 2013). In a more recent work, Larson and Schaid drew
on penalized regression in combination with variant collapsing measures to identify
rare variant enrichment in exome sequencing data (Larson and Schaid 2014).

Here we present a penalized regression method with graphical Laplacian network
regularization and variant aggregation measures for case-control WES data analysis to
assess gene contributions to the disease phenotypes. We first compared the perfor-
mance of our regression method with other existing similar approaches using simu-
lation under different scenarios. We then applied our method to the SCZ case-control
WES data to prioritize SCZ risk genes. We discuss how the genes and pathways that
we identified to make high contributions to SCZ may shed new light on genetic
structure behind the SCZ in general.
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2 Results and Discussion

Analysis of Simulated Phenotype and Genotype Data. We first simulated WES data
sets with phenotypes under four different scenarios (Supplementary Table 1 and
Supplementary Methods) and then used them to evaluate the performance of our
network-regularized regression method (Logit-Lapnet) and three existing ones (Logit,
Lasso, and Enet). Each simulation was replicated 50 times. After computing the sen-
sitivity and specificity on the cutoff paths, we plotted the receiver-operating charac-
teristic curve (ROC) and calculate the area under curve (AUC) of each method (Fig. 1).
As its AUC is the largest under all four different simulation scenarios, the Logit-Lapnet
method outperforms all other three. A similar performance assessment can also be
made on the regularization path (Wan et al. 2013; Zhang et al. 2013) (Supplementary
Fig. 1). From all the results, we could conclude that given available alternatives
Logit-Lapnet is the best choice for prioritizing candidate genes among this class of
algorithms.

To assess how the sample size affects the performance, we also simulated data sets
with different sample sizes ranging from 10 to 200 under each scenario. For each
sample size, we simulated every model 40 times and calculated the average AUCs
(Supplementary Figs. 2 and 3). Over all, the LR and its extensions gave good analysis
results for simulated case-control phenotype-genotype data– the AUC ranged from 0.6
to 0.9. The assessment of the Lasso and the Enet methods is less clear: one outperforms
the other in each of two simulation scenarios. We also calculated and compare the F1

Fig. 1. ROCs with simulated samples. (A)–(D). Simulation under scenarios 1–4. All simulations
were done with 100 samples. Average ROCs of four logistic regression methods are shown in
different colors. The error bar indicates the standard deviation of all replicates for each sample.
Their corresponding AUCs are given in parentheses in the figure legend.

436 W. Zhang et al.



scores of regression methods. F1 score is the harmonic mean of precisions and recalls
and acts as the integration of both of these two evaluations. This property makes it an
informative and efficient measurement of performance of different methods. Here, the
plot shows that under all four simulation conditions the F1 scores of the Logit-Lapnet
method are the highest among four methods being studied (Supplementary Fig. 4). The
F1 score comparison indicates that the Logit-Lapnet algorithm is more accurate than
Logit, Lasso, and Enet methods.

Due to feasibility and efficiency of the Logit-Lapnet algorithm in prioritizing risk
genes, we could further apply the method to real WES data set and get prioritizations of
the genes so as to identify important genes relating to the disease that under consid-
eration. Our motivation to develop the method for association studies is based on the
hypothesis that integration of interaction networks improves prediction precision of
logistic models. The network-constrained algorithm has been proved to out-perform
alternative options such as lasso and elastic net analyses that are implemented sepa-
rately from biological input (Li and Li 2008; Wan et al. 2013; Zhang et al. 2013).
Enlightened by the application of Logit-Lapnet to efficiently identify molecular path-
ways and cancer biomarkers, we adapted this class of methods to analyze a set of WES
data for SCZ. We use the ratio matrix of damaging allele counts over neutral allele
counts to represent normalized population genotype information. The Logit-Lapnet
approach is more sensitive for identifying disease genes because the relevant network
modules are considered by using the regularization based on the network. Laplacian
graphs are derived from gene networks, for which we used High-quality INTeractomes
(HINT) network in our study. HINT is a database of high-quality protein-protein
interactions in different organisms, which have been compiled from different data
sources and then filtered both systematically and manually to remove erroneous and
low-quality interactions (Das and Yu 2012).

Combining information of gene interactions, the Laplacian graphs form the
penalized term with regard to contribution coefficient of each gene. The L2-normalized
item incorporates network information into the estimation procedure of the regression
model and encourages smoothness in the estimate of contributions of candidate genes.
Incorporation of a gene network contributes to the advantages of Logit-Lapnet over the
other methods since in this way the method integrates into its calculation a vast amount
of a priori biological information from the network, which is ignored in either lasso or
elastic net methods. In summary, our method takes advantage of the information
obtained about genotype relationships beyond the scope of other single regression
study.

Analysis of SCZ WES Data. The simulation results clearly indicate that the LR and
its extensions can be effectively applied to case-control genotype data to identify genes
related to the phenotype or disease under consideration and the Logit-Lapnet method
gives the best performance. Here, we applied this method to the SCZ WES data to
estimate the corresponding coefficients as phenotypic contributions of SCZ target
genes. First, we derived from the WES data the phenotype vector y, the gene evaluation
data matrix X, and the normalized graph Laplacian matrix L. Corresponding to the
SCZ patient cohort, y is a binary column vector with the elements: 1’s for patients with
SCZ and 0’s for ones without SCZ. X and L are n × 844 and 844 × 844 matrices,
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respectively, where n is the number of individuals (cases and controls) and 844 is the
number of candidate genes, some of which could be responsible for SCZ in the original
WES study cohort. In the SCZ WES data set from dbGaP, there are 2,545 cases and
2,545 controls in total. Maximizing the Logit-Lapnet function (Eq. 3) is a computa-
tionally intensive process (Supplementary Fig. 5), which necessitates parallel pro-
cessing of large data sets. We randomly divided the SCZ WES data set into 25 subsets,
each with *100 cases and *100 controls. We analyzed them in parallel and then
integrated gene scores. Using the Logit-Lapnet method, we estimated from these
subsets in parallel the coefficients of candidate genes as their contributions to SCZ. We
arranged the genes in each list in descending order of their coefficients and integrated
the ranked gene lists using a robust rank aggregation method (Kolde et al. 2012). We
randomized the SCZ WES data set to evaluate this ranked gene list and to remove
possible false positives. In each iteration, we randomized the disease labels among the
samples and processed the random data set in the same manner as the real one. After
many iterations of randomization, for each gene we calculated the probability that the
rank of this gene based on a random data set is the same as or even better than that
based on the real data set. After removing genes with probability ≥0.05, we then
considered the top 20 genes as the most promising candidates for SCZ in the WES
study cohort (Supplementary Table 2). 10 of them including CARD10, TIMP2,
PPP2CA, and PTPRB were also identified as SCZ risk genes by the original exome
sequencing study (Purcell et al. 2014).

Fig. 2. SCZ gene subnetwork. After filtering by randomization, 20 genes with largest regression
coefficients were used as seeds to form the subnetwork in HINT. Gray and white nodes represent
the seed genes and their direct neighbors, respectively, in the network. Three seed genes are not
included in HINT and thus are omitted from the subnetwork.
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Because most cellular components exert their functions through interactions with
other cellular components, such inter- and intracellular inter-connectivity implies that
the impact of a specific genetic variation is not restricted to the activity of an
SCZ-related gene product that carries it, but can spread along the links of the network
and alter the activity of other SCZ-related gene products that otherwise carry no
changes. Therefore, an understanding of SCZ genes’ network context is essential to
understand the genetics of this disease. Using the aforementioned top 20 genes as seeds
and the ‘extraction by shell’ method implemented in SubNet (Lemetre et al. 2013), we
extracted a GsN (Fig. 2) from HINT (Das and Yu 2012), a high-quality protein-protein
interaction network. This SCZ GsN contains 223 proteins and 546 interactions among
them. The majority of the proteins (207, 92.83 %) form a connected component.
Despite its small size, this subnetwork clearly shows a power law distribution for its
node degrees: a prominent characteristic of complex biological networks. Unlike the
majority of proteins in the subnetwork, a few of them have a large number of inter-
action partners and are functionally more important. Many seed genes are such network
hubs in the SCZ GsN. PHC2, one network hub, was found to be affected by mutations
in SCZ patients (Purcell et al. 2014). Known SCZ loci 5q31.1, 6p22, and 12q22
contain, respectively, PPP2CA, TRIM27, and UBE2 N, which are among top 20 risk
genes that we identified for SCZ in the WES study cohort. In addition, these three
genes contain nonsynonymous coding variants with minor allele frequencies
(MAF) less than 0.1 %. Located in 12q15-q21, PTPRB, another seed gene with high
contribution, contain nonsynonymous coding variants with MAF < 0.5 %.

As a proof of principle, our SCZ study demonstrates that our data analysis work-
flow and methods can be successfully applied to WES data sets to identify disease risk
genes and subnetworks. Although they are designed to be applicable to large GWAS
and WES data sets, such as those provided by dbGaP, the implementation in main text
of this paper processes data sets with moderate sample sizes. Because individual
genotypes have larger effect on transcript abundance than on disease risk, a small
sample size can still be powerful to detect disease variants and genes (Gibson 2014). To
analyze larger ones, the optimization problem – the rate limiting step – needs to be
solved by more efficient optimizers or parallel computing or both. This difficulty is still
an open challenge and an active research area. For comparison of running time with
larger different sample sizes, please see Supplementary Fig. 5.

3 Methods

Input data for WES Regression Analysis. After SNVs and indels in the sequenced
subjects are identified and their genotypes called, while assuming the reference alleles
(RAs) of these variants to be neutral, we predicted the functional consequence (i.e.,
neutral/tolerable/benign or damaging/deleterious) of the alternative alleles (AAs) using
computational programs. Let n and p be the numbers of genes and sequenced subjects
(samples), respectively. To carry out the regression analysis of the case-control WES
data, we first summarized the genotypes and the allelic functional annotations on gene
level in two n-by-p matrices, D and N, which hold all of the numbers regarding the
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neutral and damaging allele counts of each gene i respectively in each sample j. As
longer genes tend to have more variants, to prevent the gene length from skewing up
the analysis, we normalized the damaging allele counts through the way of getting them
divided by neutral allele counts. Since each gene may contain multiple variants (SNPs
and indels), we counted the damaging and the neutral alleles of all variants within a
gene. In this way, multiple variants mapped to one gene are combined to obtain the
allele counts on the gene level. Most of the sequencing errors are filtered out at the
quality control steps as part of the variant calling process. For any remaining ones,
because they occur randomly, their effect will be cancelled out in a case-control study.
Thus, we define the input ratio matrix X as in Eq. 1.

X := Xij
� �

;D := Dij
� �

;N := Nij
� �

;Xij ¼ Dij

Nij þ s
; s ¼ 0 if Nij 6¼ 0

1 otherwise

�
ð1Þ

Due to computational intensity, instead of scoring the whole gene set, the current
implementation of our method scores and thus prioritizes a set of genes preselected
based on prior knowledge given the genotypic data. This set of genes can be obtained
in two steps. First, a core group of genes can be collected from various disease gene
databases (Goh et al. 2007; Pinero et al. 2015; Pletscher-Frankild et al. 2015;
Rappaport et al. 2014). Then, adding their neighboring genes in a gene network can
augment this core group of genes. Even for less commonly studied diseases, this
approach can procure a set of relevant genes for scoring. Genes selected for scoring and
prioritization are included in matrices X and L for analysis. It is the disease, not the
sample of the data set, that determines what genes to be selected. Therefore, the same
set of genes included in X and L will be used for two different samples of the same
disease. If the disease has different genetic risk factors in these two samples, then the
ranking of selected genes will be different for these two samples in the results. For
flowchart to further illustrate the process of input data integration, please refer to
Supplementary Fig. 6. Pre-processing of the WES data by generating the ratio data
matrix is a novelty of the method. Current studies do not provide this kind of data
matrix generation in analyzing WES data.

Graphically Laplacian Network-Regularized LR Method. In a recent study a
network-regularized linear regression method has been proposed for variable selections
(Li and Li 2008). Compared with Lasso and elastic net (Enet) methods, they show
advantages of using the network-regularized process, which include higher precisions
and comparable or even better sensitivity and specificity. In other variable selection
problems where the output vectors only contain binary values (i.e., either 0 or 1), the
LR with network regularization outperforms previous alternatives (Zhang et al. 2013).
The Laplacian graphical network-regularized LR methods (Logit-Lapnet) have been
used to identify molecular pathways of breast cancers (Zhang et al. 2013). Its appli-
cation to simulated gene expression data showed excellent sensitivity and specificity
and higher accuracy than Lasso and Enet methods. Inspired by its original application,
we adapted the Logit-Lapnet method with significant redesign to analyze the
case-control genotype data, focusing on NGS-generated data. Different from previous
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studies which use Logit-Lapnet to analyze the gene expression data (Zhang et al. 2013),
we utilize the method to WES data analysis.

Let y = [y1, …, yn]
T be the phenotype vector, where yi = 0 for control and 1 for case

(i = 1, …., n). Given matrix X, the aforementioned gene evaluation data matrix Y is
modeled by logistic function:

Y ¼ Pr y ¼ 1jX; hð Þ ¼ eXh

1þ eXh
ð2Þ

The regression coefficients in h quantify the effect of the genotypes of genes on the
‘odds ratio’ of having the disease and thus represent the importance of genes. Genes
with larger coefficients will be ranked higher than others (Li and Li, 2008). The
coefficient vector h is estimated by minimizing the negative log-likelihood function, or
equivalently, maximizing the positive function, of logistic model combined with
penalized terms. The mitigated formula of logistic graph Laplacian net criteria is

C h; k; að Þ ¼
Xn

i¼1

�yiXihþ ln 1þ eXih
� �� �þ ka hj j1 þ k 1� að ÞhTLh ð3Þ

where Xi is the i-th row-vector of data matrix X. L is the normalized graph Laplacian
matrix, hj j1 is the L1 norm of h, i.e., hj j1¼

Pp
j¼1 hj, with hj corresponding contribution

coefficient of each gene. Suppose A and E are adjacency matrix and degree matrix of
the network, respectively, then L is given as:

L ¼ I� E�1
2AE�1

2 ð4Þ

where I is the identity matrix with the same dimension to that of A or E.
Equation 3 contains three terms: the negative log-likelihood function; the L1

normalized penalty term, which L1 penalizes the norm of h; and the graph Laplacian
term, which is formulated as the inner product of h regarding to Laplacian matrix L in
(Zhang et al. 2013). The last term can be treated as the L2 normalized item as well.
Equation 3 also makes it clear that the Laplacian network-regularized LR is the ordi-
nary form of general logistic regressions, which include several more special types of
logistic models. In case when L = I, the algorithm becomes an Enet module. When
α = 1 and λ ≠ 0, the method is regressed to Lasso. If λ = 0, the method is further
simplified as a standard LR model without penalties (referred to as the Logit model
hereafter). It is clear that Logit-Lapnet, Enet, Lasso, and Logit are LR methods with
different levels of constraints on regression coefficients, known as contributions in our
methods. Given the data matrix X, the optimal values for the model parameters α and λ
are determined by a leave-one-out cross validation (CV) procedure, and the optimal
coefficients h are estimated by minimizing the criteria C h; k; að Þ given optimal
parameters kopt and aopt:
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h� ¼ argmin
h

C h; kopt; aopt
� � ð5Þ

Convexity of Eq. 3 guarantees minimal index performance C h�; kopt; aopt
� �

, and the
corresponding h� could be worked out by a standard optimizer such as the
Matlab-based software CVX (Grant and Boyd 2014). For theoretical properties of
Logit-Lapnet, please refer to Lemma 1, 2, 3 and Theorem 1 in (Zhang et al. 2013) and
the references therein. The Lemma 3 and Theorem 1 in (Zhang et al. 2013) provide
grouping effects for the Logit-Lapnet procedure. Mathematical formulation in (Zhang
et al. 2013) supports our novel application of Logit-Lapnet to risk gene prioritization.

Processing SCZ WES Genotype Data. The Swedish SCZ population-based case and
control WES data set (study accession ID number: phs000473.v1.p1) was downloaded
from dbGaP. Excluding the variants in non-coding regions, we extracted two sets of
variants – SNVs and indels – in exons of the sequenced subjects from the WES data
set. For SNVs, the functional roles of their AAs were predicted by SIFT (Hu and Ng
2013), PolyPhen2 (Sachdev and Keshavan 2010), and Blosum62 scoring matrices. We
combined these three scores using a so-called ‘damaging-dominant’ rule – the AA was
considered as damaging as long as one method predicts so. We used this policy since
the variant annotations are usually predicted by and selected among high impacts and
damaging, in this sense, is the higher impact compared with neutral/tolerant. For indels,
we used SIFT to predict the functional roles of their AAs. RAs were considered neutral
in this regard. We derived the D and N matrices (Eq. 1) for SNVs and indels separately
from their functional annotations. After combining D and N of SNVs and indels
separately, we calculated X and use it as the input data matrix. The ratio matrix reflects
the relative genetic influences of damaging alleles in each gene on the disease status.

Compiling SCZ-related Genes. Derived from the SCZ WES genotype data, the input
matrix X holds the damage load for 13,899 sequenced genes in 200 samples. Given the
large number of genes and the modest sample size, to keep the statistical analysis
tractable we focused our analysis on genes likely to be related to SCZ according to
prior knowledge. Our strategy for gene selection was to include both genes most
relevant to SCZ and ones with potential but unknown associations with SCZ. We used
a two-tier approach. First, we compiled a list of 308 genes that have been shown to be
SCZ-related:

• 217 genes with prior evidence for association with SCZ, which are prioritized in the
data source SZGR (Jia et al. 2010).

• 91 genes collected from published literatures (Supplementary Table 3).

Next, based on the ‘guilt-by-association’ principle, we collected 536 direct
neighbors of these 308 genes in the HINT. Together, we selected 844 candidate genes.

Networks used in SCZ WES Data Analysis. We used HINT with the Logit-Lapnet
method for our SCZ WES data analysis. From HINT, the Laplacian matrix of the
aforementioned target genes was generated and then used as the graphical Laplacian
normalized term in Eq. 2.
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4 Conclusion

We developed a computational framework for WES data analysis that combines both
prioritization of disease risk genes by graphical Laplacian regularized LR and
extraction of disease-related GsN by SubNet. Although the Logit-Lapnet method has
been used before to analyze gene expression data and somatic mutation profiles
(Betcheva et al. 2013; Hoffman et al. 2013; Shi et al. 2009; Stitziel et al. 2011), our
study demonstrates here that after data transformation it can also be efficiently applied
to exome sequencing-based GWAS genotype data. Method assessment by simulation
shows that Logit-Lapnet is more sensitive for identifying seed genes with higher pri-
orities than other related methods. We applied our method to SCZ WES data.
Top-ranked genes are either known SCZ risk genes or closely related to SCZ. Using
them as seeds, we extracted the SCZ GsN from known protein interaction network. It
provides a valuable subnetwork for pathway and gene module detection of SCZ.
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